MULTIMERIC FUSION PROTEINS OF THE TNF SUPERFAMILY LIGANDS

Inventor: Richard S. Kornbluth, La Jolla, CA (US)

Assignee: The Regents of the University of California, Oakland, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer.

Appl. No.: 09/454,223
Filed: Dec. 9, 1999

Int. Cl.
C12P 21/02 (2006.01)
C07K 14/525 (2006.01)

U.S. Claims
435/695, 530/351

References Cited
U.S. PATENT DOCUMENTS
5,962,406 A 10/1999 Armitage et al. 514/8
6,017,527 A * 1/2000 Maraskovsky et al. 424/93.71
6,190,886 B1 2/2001 Hoppe et al. 435/69.7

FOREIGN PATENT DOCUMENTS
WO WO 93/08207 4/1993
WO WO 99/04000 1/1999
WO WO 01/16180 3/2001
WO WO 01/49866 7/2001
WO WO 03/068799 8/2003

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner—Gary B. Nickol
Assistant Examiner—Cherie Woodward
(74) Attorney, Agent, or Firm—DLA Piper US LLP

ABSTRACT

A method for constructing stable bioactive fusion proteins of the difficult to express tumor necrosis factor superfamily (TNFSF), and particularly members CD40L (CD154) and RANKL/TRANSE, with collecting, particularly pulmonary surfactant protein D (SPD) is described. Single trimers of these proteins lack the full stimulatory efficacy of the natural membrane forms of these proteins in many cases. The multimeric nature of these soluble fusion proteins enables them to engage multiple receptors on the responding cells, thereby, mimicking the effects of the membrane forms of these ligands. For CD40L-SPD, the resulting protein stimulates B cells, macrophages, and dendritic cells, indicating its potential usefulness as a vaccine adjuvant. The large size of these fusion proteins makes them less likely to diffuse into the circulation, thereby limiting their potential systemic toxicity. This property may be especially useful when the fusion proteins are injected locally as a vaccine adjuvant or tumor immunotherapy agent to prevent them from diffusing away. In addition, these and other TNFSF-collectin fusion proteins present new possibilities for the expression of highly active, multimeric, soluble TNFSF members.

14 Claims, 7 Drawing Sheets
FIG. 2
FIG. 5
1 MULTIMERIC FUSION PROTEINS OF THE
TNF SUPERFAMILY LIGANDS

GRANT INFORMATION

This invention was made with government support under Grant Nos. AI35258 and HL57911 awarded by the National Institutes of Health. The United States government has certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method for preparing soluble multimeric proteins consisting of more than three iterations of the same bioactive molecule using recombinant DNA technology.

The present invention particularly concerns a new method of producing multimeric fusion proteins involving the TNF superfamily (TNFSF) members as a fusion proteins with SPD, and more specifically, CD40L-SPD fusion proteins and useful modifications thereof.

2. Description of Related Art

Numerous proteins can be made using modern molecular biology techniques and used in diagnostic and therapeutic applications. Using recombinant DNA techniques, the DNA encoding a single amino acid chain is constructed and then introduced into a cell which manufactures the final protein. Some cells, especially bacteria like E. coli, lack the ability to properly fold the amino acid chains into the proper quaternary structure and they often fail to apply the necessary modifications (e.g., glycosylation and disulfide bond formation) that are needed for the protein to be bioactive and resistant to degradation in vivo. While most of these challenges can be met by expressing the amino acid chain in eukaryotic cells like yeast or mammalian cells in vitro, it is not always straightforward to express proteins that consist of two or more amino acid chains. In general, for multichain proteins, the single amino acid chains must associate together in some way either within the producer cell or subsequently after the monomers are secreted from the producer cell. For artificially constructed molecules, the introduction into a single amino acid chain of an amino acid sequence which causes this chain-to-chain association can be an important step in producing multichain proteins.

One of the most widely used methods of causing two amino acid chains to associate is to conjoin or fuse a protein with the Fc portion of immunoglobulin, creating a dimeric Fc fusion protein (Fanslow et al., J. Immunol. 136:4099, 1986). A protein of this type can be formed from the extracellular domain of a tumor necrosis factor (TNF) receptor fused to Fc (termed etanercept and marketed as ENBREL®), which is effective in the treatment of rheumatoid arthritis. A second example is the construction of a fusion protein between the dimerizing extracellular portion of CD8 with the extracellular portion of CD40L (Hollenbaugh et al., EMBO J. 11:4313, 1992). Here, the dimerizing CD8 portion of the fusion protein helps to maintain the CD40L portion in the trimeric form needed for its bioactivity. A more recent example is the addition of an isoleucine zipper motif to CD40L, which permits the production of trimeric soluble CD40L molecules (Morris et al., J. Biol. Chem. 274:418, 1999).

The TNF superfamily (TNFSF) consists of an expanding number of proteins (see Table 1) which are crucial for the development and functioning of the immune, hematological, and skeletal systems. TNFSF proteins are ligands for a corresponding set of receptors of the TNF receptor superfamily (TNFRSF). All TNFSF members are expressed as Type II membrane proteins, with the exception of lymphotixin-alpha which is produced as a secreted protein. However, soluble forms of several TNFSF proteins can be released from the cell surface by proteolytic cleavage, usually by specific metalloproteinases.

The production of soluble forms of TNFSF proteins has been an important step in the study of these proteins. Soluble TNFSF ligands can be used to study the activities of these proteins in vitro without the complexities in interpretation that result when cells or cellular membranes expressing TNFSF proteins are added. In addition, soluble forms of several TNFSF proteins have potential as therapeutic agents for human diseases. In particular, TNF-α has been extensively studied for the treatment of cancer and soluble CD40L is currently undergoing clinical trials to assess its antitumor effects.

To produce soluble forms of TNFSF proteins, either the membrane protein is expressed in a cell line possessing a protease capable of separating the TNFSF extracellular domain from the transmembrane domain or a truncated form of the TNFSF protein is produced which consists solely of the extracellular domain plus a signal sequence. In either case, certain soluble forms of TNFSF proteins are unstable in solution as simple homotrimers composed solely of the extracellular domain. For example, naturally solubilized TNF-α is labile under physiological conditions [Schuchmann, 1995 #129]. To solve this stability problem, chimeric proteins have been constructed according to one of four different design principles: (1) The extracellular portion of the TNFSF protein has been expressed fused to the dimeric portion of the immunoglobulin Fc fragment U.S. Pat. No. 5,155,027, Oct. 13, 1992, issued to, Andrzej Z. Sledziewski, et al. In the case of CD40L and OX40L, this yields a soluble molecule which is significantly less active than the native membrane form of this protein. (2) The extracellular portion of the TNFSF protein has been expressed with an antigenic tag (usually the FLAG motif) fused to its N-terminus [Mariani, 1996]. The addition of an antibody to the tag (e.g., anti-FLAG antibody) aggregates these proteins into a multimeric form. Crosslinking enhances activity on B cells. (3) The extracellular portion of the TNFSF protein has been expressed fused to the spontaneously dimerizing extracellular portion of the CD8 molecule [Hollenbaugh, 1992]. In the case of CD40L, this creates a hexameric molecule [Pullen, 1999] which is likely formed by two CD40L trimers attached to three CD8 dimeric stalks. Despite this, the addition of an anti-CD8 antibody to crosslink the CD40L-CD8 fusion protein yields a further enhancement of CD40L activity on B cells. (4) The extracellular portion of the TNFSF protein has been expressed fused to a trimerizing isoleucine zipper which maintains the overall trimeric structure of the protein [U.S. Pat. No. 5,716,805, Feb. 10, 1998, issued to Subashini Srinivasan et al. This soluble CD40L trimer or “sCD40LT” is the form of that protein now being clinically tested in humans for its anti-tumor effects.

Compounding the difficulties in producing stable forms of soluble TNFSF proteins are compromises in bioactivity. As exemplified by FasL, TNF, and CD40L, many of the soluble forms of these proteins lack the full range of stimulatory activities displayed by the membrane forms of these molecules. For FasL, several groups have reported that naturally produced soluble FasL (generated by proteolytic cleavage from the membrane form) has a spectrum of activities that
is distinctly different from the membrane form. Soluble FasL induces apoptosis in activated CD4+ T cells but not fresh, resting CD4+ T cells. In contrast, both types of CD4+ T cells are killed by membrane FasL or a recombinant soluble form of FasL (WX1) that spontaneously aggregates into oligomers larger than a decamer. For TNF, T cell activation through stimulation of TNFR II, the 80 kDa receptor for TNF, is much greater with membrane TNF than soluble TNF. However, if soluble TNF is produced as a tagged protein and crosslinked with an antibody against the tag, then it completely mimics the activities of membrane TNF [Schneider, 1998]. Finally, for CD40L, the stimulatory effects of a soluble form of this TNFSF protein are enhanced by crosslinking [Kehry, 1994] and yields an activity similar to membrane CD40L. For example, soluble CD40L-CD8 fusion protein requires crosslinking with an antibody to CD8 in order to drive resting B cells to proliferate to a degree similar to membrane-bound CD40L. Even more strikingly, although membrane-bound CD40L expressed on baculovirus-transduced SE9 insect cells is a strong B cell stimulator, small vesicles (10-1,500 nm) prepared from the membranes of these cells are less stimulatory. However, ultracentrifugation of these vesicles creates aggregates which have the full activity of the original membrane CD40L protein. This indicates that B cells are more highly stimulated by a large surface of CD40L than they are by a smaller surface expressing this membrane ligand.

Taken together, the above reports suggest that, for some TNFSF/TNFRSF ligand/receptor pairs at least, it is essential to cluster receptors together for full signaling activity. By this interpretation, the efficacy of the membrane forms of FasL, TNF, and CD40L occurs because these ligands can move in the plane of the membrane toward the contact zone with a receptor-bearing responding cell, thereby clustering ligated receptors to form a receptor-dense region of the membrane. This interpretation is further supported by experiments where crosslinking of a soluble TNFSF protein effectively mimics the activity of the membrane form of the protein [Schneider, 1998].

In all of the above examples, no more than three amino acid chains have been caused to associate together. There is a need to produce multimeric protein molecules where more than three amino acid chains are caused to associate into a single soluble molecular complex. An important example comes from studies of CD40L (also called CD154 or TNFSF5), which is a member of the TNF family of molecules that are normally expressed as insoluble, cell membrane proteins. It has been shown that soluble homotrimerers composed of the extracellular regions of CD40L, TNF, and FasL are not potently active on resting cells that bear receptors for these proteins. However, if these proteins are expressed with a tag on their ends (e.g., the FLAG peptide sequence) and then the trimers are extensively crosslinked using an antibody to FLAG, full activity appears (Schneider et al, J. Exp. Med. 187:1205, 1998). From this, it can be inferred that the soluble single-trimer forms of these molecules do not duplicate the multivalent interactions that normally occur when a receptor-bearing cell comes in contact with the membrane of a cell expressing numerous ligand trimers on its surface. This distinction may be due to a need for receptor clustering for full signaling (Iazuzoni and Beutler, N. Engl. J. Med. 334:1717, 1996), which in turn is only possible with a multimeric ligand engaging many receptors at the same time in a localized region of the cell membrane.

SUMMARY OF THE INVENTION

The present invention contemplates a method of preparing soluble, multimeric mammalian proteins by culturing a host cell transfected or coinfected with an expression vector encoding a fusion protein comprising the hub, body, and neck region of a collectin molecule and a heterologous mammalian protein.

In one embodiment, the heterologous mammalian protein comprises an extra cellular domain of a mammalian transmembrane protein; the resulting fusion protein forms a multimer.

In another embodiment, the heterologous mammalian protein comprises a soluble protein such as a cytokine; the resulting fusion protein forms a multimer.

In another embodiment, sites of proteolytic degradation are included or removed from the fusion protein; the resulting fusion protein forms a multimer from which are cleaved single units at a rate made variable by the nature of the proteolytic digestion sites either included or excluded.

In yet another embodiment, special attention is given to the immunogenicity of the fusion protein by altering the junction between the two naturally occurring proteins from which it is made; the resulting fusion protein may be less or more able to elicit an immune response against itself, which could lengthen its persistence or contribute to it immunological effectiveness.

A hybrid nucleotide sequence of no more than 1528 base pairs including a sequence defining a structural gene expressing a conjoined single strand of a multimeric TNFSF-SPD fusion protein, said structural gene having a nucleotide base sequence selected from members of the group consisting of SEQ ID NO 1, SEQ ID NO 3 and SEQ ID NO 5 is disclosed by this invention. The organism can be E. coli, a yeast, a higher plant or animal.

Yet another embodiment contemplated by the invention is multimeric TNFSF-SPD fusion protein having a plurality of polypeptide trimers, a first trimer consisting of peptide strands of members of the TNF superfamily (TNFSF) of ligands, and a second trimer strand from a collectin molecule, each first trimer conjoined to a second polypeptide trimer strand from a collectin molecule, wherein said ligand strand is substituted for native carbohydrate recognition domains (CRD) of the collectin molecules. The conjoined collectin strands are covalently bound in parallel to each other, forming a multimeric fusion protein comprising a plurality of trimeric hybrid polypeptide strands radiating from a covalently bound center hub of the molecule. The
free end of each trimeric radiating strand has a TNFSF moiety attached. The TNFSF moiety is one selected from the group consisting of ligands LTA, TNF, LTβ, and TNFSF4 to TNFSF 18 as shown in Table II, and their functional equivalents, and modifications thereof.

The invention also contemplates a method for preparing a CD40-SPD multimeric fusion polypeptide, including the steps of initiating a culture, in a nutrient medium, of procaryotic or eucaryotic host cells transformed with a recombinant DNA molecule including an expression vector, appropriate for the cells, operatively linked to an exogenous DNA segment defining a structural gene for CD40-SPD ligand. The structural gene has a nucleotide base sequence of SEQ ID NO 1 from about base 32 to about base 1444. Thereafter, the culture is maintained for a time period sufficient for the cells to express the multimeric molecule.

Also contemplated is a method of producing a secreted, very large, biologically active, multimeric tumor necrosis factor superfamily ligand fusion protein chimera that is highly immunogenic and not readily diffusible. The steps for this method are as follows:

1. introducing into a host cell a first chimeric DNA construct including a transcriptional promoter operatively linked to a first secretory signal sequence, followed downstream by, and in proper reading frame with, a first DNA segment encoding a polypeptide chain of a first TNFSF ligand requiring multimerization for biological activity. This sequence is joined to a second DNA sequence encoding a collectin polypeptide at the site where the collectin’s CRD was purposefully removed.

2. introducing into the host cell, a second DNA construct including a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by, and in proper reading frame with, a third DNA sequence encoding a second polypeptide chain of a second TNFSF ligand joined to a fourth DNA sequence encoding a collectin polypeptide, wherein the collectin’s CRD was purposefully removed, and then,

3. growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a large multimerized polypeptide fusion protein, wherein the first polypeptide chain of a TNFSF-SPD protein is bound by parallel bonding of the respective collectin domain trimer to the second polypeptide chain of a different TNFSF-SPD polypeptide trimer, and wherein the multimerized polypeptide fusion protein exhibits biological activity characteristic of both membrane-attached TNFSFs, and

4. isolating the biologically active, multimerized TNFSF-SPD polypeptide fusion from said host cell. The chimeric reactant compounds are humanized to guard against destruction by a potential human recipient’s immune system.

A method for stimulating the immune response in potentially immunocompetent cells using multimeric TNFSF fusion proteins by contacting the cells with the multimeric TNFSF fusion proteins, causing the cells to proliferate, is also contemplated. The cells used may be resting B cells. There is also a method for increasing antigenicity of cells by contacting the cells with the multimeric TNFSF fusion proteins. In this case, the cells may be tumor cells or HIV positive cells.

Other preferred embodiments contemplate the methods of preparation described above, wherein the host transformed is either a procaryote, such as E. coli, a eucaryote, for example yeast, such as S. cerevisiae, or a higher plant, such as alfalfa or tobacco.

Still further embodiments and advantages of the invention will become apparent to those skilled in the art upon reading the entire disclosure contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Structure of the CD40L-SPD fusion protein. The extracellular portion of the CD40L homotrimer, including its membrane-proximal stalk, was fused to the body of SPD. The N-terminus of SPD contains two cysteines which link the homopolymer together by disulfide bonds forming a hub. The trimeric collagenous stalk extend from the hub as a cruciate structure and end in a spontaneously trimerizing neck region. The amino acid domains in a single chain of the CD40L-SPD are shown at the top. At the bottom is the tetrameric (four CD40L trimers) which is expected to form. In addition, the hub region of SPD can participate in stacking up to 8 or more cruciate forms into higher order aggregates.

FIG. 2. Ion-exchange chromatography of murine CD40L-SPD. CHO cells expressing murine CD40L-SPD were grown in serum-free media, concentrated using a 100 kDa cutoff ultrafiltration membrane, and diafiltered into 50 mM bicine, pH 9.0, 1 mM EDTA. Using an FPLC system, the protein from 400 mL of media was applied to a Fractogel SSO3-650M column and eluted with a linear salt gradient. 3 mL samples were collected. Shown are curves for protein concentration (OD280), conductivity as % 1 M NaCl in the buffer, and ELISA-detectable CD40L-SPD assayed at 1:100 dilution.

FIG. 3. Size fractionation of murine CD40L-SPD by ultrafiltration. CD40L-SPD is a 471 amino acid protein with a predicted molecular weight of 49,012 for each of the twelve component chains in the dodecamer (composed of four trimeric subunits). This does not include added carbohydrates. Therefore, the full dodecamer will have a molecular weight in excess of 600,000. However, from the literature on recombinant surfactant protein D made in CHO cells, it appears that some of the product will be in the form of trimers that are not part of a cruciate-formed dodecamer. To determine what percentage of CD40L-SPD was produced in a multimeric form, supernatant from the transfected CHO cells were passed through filters of different porosities (rated for their ability to retard globular proteins). An ELISA was used to detect the amount of CD40L-SPD (measured at multiple dilutions) that passed through the filter. As shown, about 90% of the protein is retained by a 300,000 kDa cut-off filter. This indicates that most of the protein is in the dodecameric form. In addition, the cruciate dodecamers of surfactant protein D can also stack on top of each other into even higher molecular weight forms. This is the likely explanation for the small fraction of CD40L-SPD that is retained by the 1,000 kDa cut-off filter.
FIG. 4. Activation of human B cells by human CD40L-SPD. Conditioned media from CHO cells expressing human CD40L-SPD was added to human B cells along with IL-4. In the left panel, the cells were stained with CyChrome-labeled anti-CD 19 to identify B cells and PE-labeled anti-CD3 to identify T cells. As shown, most of the cells proliferating in the culture were CD19+CD3+ B cells. In the right panel, the cells were stained with CyChrome-labeled anti-CD19 to identify B cells and PE-labeled anti-CD80 (B7-1) to identify these co-stimulatory molecules. As shown, almost all of the B cells were induced by CD40L-SPD to express CD80.

FIG. 5. Activation of murine B cells by murine CD40L-SPD. Murine CD40L-SPD was added to resting murine splenic B cells for a two day culture period. For the final 4 hours, the cultures were pulsed with 3H-thymidine, following which the cells were harvested and DNA synthesis was measured by scintillation counting. As shown, CD40L-SPD is nearly as effective as anti-IgM in promoting the proliferation of resting B cells.

FIG. 6. CD40L-SPD stimulation of macrophage chemokine production. Conditioned media from CHO cells expressing human CD40L-SPD, an inactive mutant of human CD40L-SPD (T147N-CD40L-SPD), or murine CD40L-SPD (mCD40L-SPD) were added to cultures of human monocyte-derived macrophages. As a negative control, this media was heat-inactivated at 60° C. for 30 minutes. Also shown is a form of soluble CD40L (sCD40L) consisting of 149 amino acids from the extracellular domain of human CD40L (Peprotech) added at 1 μg/mL. 24 hours later, supernatants were collected and assay for MIP-1β by ELISA. However, using CHO cells transfected with the secreted protein was clearly detectable. This demonstrates that the CD40L portion and not the SPD portion of the protein was responsible for stimulating the macrophages.

FIG. 7. Expression of RANKL/TRANCE-SPD production from CHO cells detected by ELISA. Antibodies against RANKL/TRANCE were used to construct an ELISA capable of detecting the RANKL/TRANCE protein. As shown, there was no background with the media control. Using a fusion protein between CD70 (CD27L or TNFSF7) and SPD, there was also no signal, indicating the specificity of the ELISA. However, using CHO cells transfected with an expression plasmid for CD70-SPD, immunoreactive secreted protein was clearly detectable. This demonstrates the generalizability of the method for expressing TNFSF members as fusion proteins with collectins such as SPD.

DESCRIPTION OF THE PREFERRED EMBODIMENT

1. Definition of Terms

Multimeric: As used herein the term multimeric refers to a multimer of a polypeptide that is itself a trimer (i.e., a plurality of trimers).

Functional Equivalent: Herein refers to a sequence of a peptide or polypeptide that has substantial structural similarity and functional similarity to another such sequence.

Modifications: Herein refers to point changes involving single amino acids, wherein the functionality is altered, without appreciably altering the primary sequence or primary structure of a peptide or polypeptide.

It should be noted that all amino acid residue sequences are represented herein by formulae whose left to right orientation is in the conventional direction of amino-terminus to carboxy-terminus. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a bond to a radical such as H and OH (hydrogen and hydroxyl) at the amino- and carboxy-termini, respectively, or a further sequence of one or more amino acid residues up to a total of about fifty residues in the polypeptide chain.

 Constitutive promoter: A promoter where the rate of RNA polymerase binding and initiation is approximately constant and relatively independent of external stimuli. Examples of constitutive promoters include the cauliflower mosaic virus 35S and 19S promoters described by Poszkowski et al., EMBO J, 3:2719 (1989) and Odell et al., Nature, 313:810 (1985).

DNA: Desoxyribonucleic acid.

Enzyme: A protein, polypeptide, or RNA molecule, or multimeric protein capable of accelerating or producing by catalytic action some change in a substrate for which it is often specific.

Expression vector: A DNA sequence that forms control elements that regulate expression of structural genes when operatively linked to those genes.

Expression: The combination of intracellular processes, including transcription and translation undergone by a structural gene to produce a polypeptide.

Insert: A DNA sequence foreign to the rDNA, consisting of a structural gene and optionally additional DNA sequences.

Nucleotide: A monomeric unit of DNA or RNA consisting of a sugar moiety (pentose), a phosphate, and a nitrogenous base pair (bp): A partnership of adenine (A) with thymine (T), or of cytosine (C) with guanine (G) in a double stranded DNA molecule.
heterocyclic base. The base is linked to the sugar moiety via the glycosidic carbon (1' carbon of the pentose) and that combination of base and sugar is a nucleoside. When the nucleoside contains a phosphate group bonded to the 3' or 5' position of the pentose it is referred to as a nucleotide.

Operatively linked or inserted: A structural gene is covalently bonded in correct reading frame to another DNA (or RNA as appropriate) segment, such as to an expression vector so that the structural gene is under the control of the expression vector.

Polypeptide and peptide: A linear series of amino acid residues connected one to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues.

Promoter: A recognition site on a DNA sequence or group of DNA sequences that provide an expression control element for a gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.

Inducible promoter: A promoter where the rate of RNA polymerase binding and initiation is modulated by external stimuli. Such stimuli include light, heat, anaerobic stress, alteration in nutrient conditions, presence or absence of a metabolite, presence of a ligand, microbial attack, wounding and the like.

Spatially regulated promoter: A promoter where the rate of RNA polymerase binding and initiation is modulated in a specific structure of the organism such as the leaf, stem or root. Examples of spatially regulated promoters are given in Chua et al., Science, 244:174-181 (1989).

Spatial-temporally regulated promoter: A promoter where the rate of RNA polymerase binding and initiation is modulated in a specific structure of the organism at a specific time during development. A typical spatial-temporally regulated promoter is the EPSP synthase-35S promoter described by Chua et al., Science, 244:174-181 (1989).

Temporally regulated promoter: A promoter where the rate of RNA polymerase binding and initiation is modulated at a specific time during development. Examples of temporally regulated promoters are given in Chua et al., Science, 244:174-181 (1989).

Protein: A linear series of greater than about 50 amino acid residues connected one to the other as in a polypeptide.

Recombinant DNA molecule: A hybrid DNA sequence comprising at least two nucleotide sequences not normally found together in nature.

RNA: Ribonucleic acid.

Selective Genetic marker: A DNA sequence coding for a phenotypical trait by means of which transformed cells can be selected from untransformed cells.

Structural gene: A DNA sequence that is expressed as a polypeptide, i.e., an amino acid residue sequence.

Synthetic promoter: A promoter that was chemically synthesized rather than biologically derived. Usually synthetic promoters incorporate sequence changes that optimize the efficiency of RNA polymerase initiation.

2. Introduction

This invention discloses the production of TNFSF proteins as multimeric (i.e., many trimers) ligands fused onto a trimeric, branched protein backbone. Collectin molecules are ideal for this purpose because they are formed from many trimeric, collagenous arms linked to a central hub by disulfide bonds. Of the collecting, pulmonary surfactant proteins (SPD) was chosen initially because it is a homopolymer encoded by a single gene, unlike C1q and surfactant protein A, which are composed of two different protein subunits. In addition, recombinant SPD has been successfully expressed in vitro in reasonable yield [Crouch, 1994], and a peptide containing the “neck” region of SPD was shown to spontaneously trimereize in solution [Hoppe, 1994]. Consequently, extracellular domains of human and murine CD40L were substituted for the carbohydrate recognition domain of pulmonary surfactant D (SPD) to create a four-armed molecule (three peptide chains per arm) with CD40L at the end of each arm. This molecule is named CD40L-SPD. In addition, because SPD tends to stack into higher order aggregates with up to 8 molecules associated at the hub [Crouch], even greater degree of multimerization can occur [Lu, 1993]. CD40L-SPD therefore mimics the expression of CD40L by an activated T cell in that it presents a multivalent complex similar to membrane-bound CD40L. While remaining soluble, CD40L-SPD equals membrane CD40L in its range of activities.

3. Construction of expression plasmids for CD40L-SPD.

cDNAs of exposed human and murine CD40L, removed from cell membranes, were cloned by PCR by well-known methods. Murine surfactant protein D was cloned by hemi-

CD40L/SPD: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAGGGTGTA-3'

mSPD: 5'-GGG

mCD40L: 5'-GGGCTCGAG

SPD/CD40L5: 5'-CTGCCCTTTCTCTCCATGC-3'

mCD40L/SPD3: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAGGTTGGACAAGATAGAAG-3'

mCD40LSPD: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAG-3'

mCD40LSPD: 5'-GGG

GCAGCTGCTGCCAGCCTAGGACAGCGCAC-3' 5'-GGAGGCAGCTGCTGCCAGCCTAGGACAGCGCAC-3'

mSPD3ext: 5'-GGAGGCAGCTGCTGCCAGCCTAGGACAGCGCAC-3'

mSPD5: 5'-GGG

GCTAGGGGAATTCCCAACAGGAAGCAATCTGACATGCTGCCCTTCTCTCCATGC-3'

mSPD5: 5'-GGG

GCTAGGGGAATTCCCAACAGGAAGCAATCTGACATGCTGCCCTTCTCTCCATGC-3'

mSPD3ext: 5'-GGAGGCAGCTGCTGCCAGCCTAGGACAGCGCAC-3'

mSPD5: 5'-GGG

mCD40L: 5'-GGGCTCGAG

CD40L/SPD: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAGGTTGGACAAGATAGAAG-3'

mCD40L: 5'-GGGCTCGAG

CD40L/SPD: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAGGTTGGACAAGATAGAAG-3'

mCD40LSPD: 5'-CTTCGACCTTATCCAATCTTC-GATGGCICATAGAAGATTGGATAAG-3'

mCD40LSPD: 5'-GGG

GTACCCCCGTCTAGCGCTATTTCGAGCTGCTGCCAGCCTAGGACAGCGCAC-3'

4. Creation of the CD40L-SPD Fusions

To create the CD40L-SPD fusions, overlap PCR was used. Murine SPD was amplified by named PCR using mSPD5 and mSPD3ext for the first round of 30 cycles. The product was diluted 1:1000 and 1 μl was amplified for another 30 cycles using mSPD5 and CD40L/SPD5, where the 3' half of CD40L/SPD5 is a reverse primer for SPD C-terminal to the neck region (deleting the CRD) and the 5' half of CD40L/SPD5 contains bases from the N-terminus of the extracellular portion of CD40L (immediately adjacent to the transmembrane region). Similarly, the CD40L plasmid was
amplified with SPD/CD40L.5 and CD40L.3, which contains a Kpn I site (underlined). All of these PCRs were performed with Pfu cloned polymerase (Stratagene) using hot start (AmpliVox, Perkin-Elmer) and the thermocycling program: 94° C. for 2.5 min; then 30 cycles of 94° C. for 10 sec, 43° C. for 30 sec, and 72° C. for 7 min.

To form the chimeric construct, 1 μL of a 1:1,000 dilution of gel-purified products from the above reactions was combined and amplified with rmSPD5 and CD40L.5. Because Pfu polymerase did not consistently yield the expected 1.62 kb overlap product, AccuTaq LA DNA polymerase (Sigma) was used for this PCR, using the thermocycling program: 94° C. for 2.5 min; then 30 cycles of 98° C. for 20 sec, 43° C. for 30, and 68° C. for 10 min. The resulting product was digested with Nhe I and Kpn I, gel-purified, and ligated into the Nhe I and Kpn I sites in the expression plasmid, pCDNA3.1(+) (Invitrogen, Carlsbad, Calif.). DH5 E. coli were transformed with the construct and plasmid DNA was purified either by double banding in ethidium bromide-CsCl gradients or by anion exchange resin (QiAgen). To form the T147N-CD40L-SPD construct, the same approach was used except that the CD40L coding region was taken from the expression plasmid for T147N-CD40L [Kornbluth]. The amino acid sequence at the junction between SPD and CD40L is . . . KAALFPDGHRRLDKVE . . . (SEQ ID NO:16), where the C-terminal portion begins the sequence for CD40L. To form mCD40L-SPD, a similar approach was taken except that primers SPD/mCD40L.5/mCD40L/SPD3, and MCD40L.3 were used for amplifications involving murine CD40L is . . . KAALFPDGHRRLDKVE . . . (SEQ ID NO:17), where the C-terminal portion begins the sequence for murine CD40L. Both DNA strands of each construct were sequenced to confirm the constructs were correct. In other experiments, an entirely humanized construct, consisting of human CD40L fused to human SPD, was constructed (data not shown).

Spleen cells from C3H/HeJ mice were stimulated with 5 μg/ml concanavalin A and 10 mg/ml L-glutamine, 10% fetal bovine serum (FBS), 50° C. for 24-31 anti-human CD40L MAb (Ancell) or MRI methotrexate.

Concanavalin A and 10 mg/ml IL-2 (Sigma) for 8 hours (31). mRNA was isolated using the Micro FastTrack kit (Invitrogen). cDNA was prepared using Superscript II reverse transcriptase (Life Technologies) and random hexamers as primers. PCR primers sequences (SEQ ID Nos 18 through 21) were as follows (where the underlined bases indicate restriction endonuclease sites for cloning into the vector):

5mRANKL-ext: 5'-CATGTTCCTGGCCCTCCTC-3'
3mRANKL-ext: 5'-GTACAGGCTCAAGAGAGGGC-3'
5mRANKL-int: 5'-ATA CGCGCCGATGAGATCTAC-3'
3mRANKL-int: 5'-GGGGTTA CGCGCGCCAATGTTCCAGGAAAATGTTCC-3'

The extracellular portion of RANKL/TRANCE was cloned by nested PCR. In the first round of PCR, 5mRANKL-ext and 3MRANKL-ext were used with Pfu cloned polymerase (Stratagene) using the thermocycling program: 94° C. for 2.5 min; then 30 cycles of 94° C. for 10 sec, 50° C. for 30 sec, and 72° C. for 2 min. The product was diluted 1:1,000 and 1 μL was amplified for another 30 cycles using 5mRANKL-int and 3mRANKL-int, which contain an Xho I site and a Not I site respectively. The resulting product was digested with Xho I, blunt-ended with T4 DNA polymerase, then digested with Not I and gel-purified. The CD40L-SPD expression plasmid described above was digested with Msc I and Not I and gel purified. Then the RANKL/TRANCE sequence was ligated into this vector in frame with the SPD coding sequence. The amino acid sequence at the junction between SPD and RANKL/TRANCE is . . . KAALFPDGRAQMDPNR . . . (SEQ ID NO:22), where the N-terminal portion is from SPD and the C-terminal portion is the extracellular sequence of RANKL/TRANCE. Both DNA strands of each construct were sequenced to confirm that the constructs were correct.

DG44 (a line of CHO-K1 cells deficient in dihydrofolate reductase (DHFR)) (32) and pCH1P (a plasmid containing the hamster DHFR minigene) (33) were gifts from Dr. Lawrence Chasin, Columbia University, New York, N.Y. DG44 cells were cultured in α-MEM consisting of ribo- and deoxynucleoside-free α-MEM (BioWhittaker, Walkersville, Md.) supplemented with 200 μM L-glutamine, 10% fetal bovine serum (FBS) and 10 μg/ml each of adenosine, deoxyadenosine, and thymidine (Sigma). All cell cultures described were negative in a mycoplasma rRNA assay (Gen-Probe, San Diego). DG44 cells in six-well plates were transfected by the method of Okayama and Chen (34) with 10 μg of expression plasmid and 0.05 μg of pCH1P (200:1 ratio). After two days, the transfected DG44 were trypsinized and transferred to 100 mm plates. At this point, the media was switched to α-MEM which differs from α-MEM in that dialyzed FBS (HyClone Systems, Logan, Utah) was used and no nucleoside supplements were added. Only cells containing the DHFR minigene were able to grow in α-MEM, and colonies were selected after 10 days, cloned using cloning rings, and transferred to 12.5 cm² flasks. Clones were selected for expansion using an ELISA to screen for the production of either murine or human CD40L (see below). Using the method described by Kingston et al. (35), escalating doses of methotrexate were used to amplify the transfected genes over a period of 6-14 months until the cells grew well in 80 μM methotrexate. Each expressing clone was re-cloned once or twice more in order to select the highest expressing cells.

Selected clones were adapted for growth in nucleoside-free UltraCHO media (BioWhittaker) supplemented with 50-100 μg/ml ascorbic acid and 50 μM methotrexate (Sigma). The non-adherent population was further adapted for suspension growth in roller bottles. In some experiments, the cells were adapted from α-MEM to CHO-S-SFM II media (Life Technologies) supplemented with ascorbic acid and 50 μg/ml L-proline.

8. ELISA Assay for Human and Murine CD40L-SPD

To assay for correctly folded CD40L, wells of a MaxiSorb 96-well plate (Nunc) were coated overnight at 4° C. with 50 μL of carbonate-bicarbonate, pH 9.40 buffer containing 0.5 μg/ml 24-31 anti-human CD40L MAb (Anellor) or MRI anti-murine MAb (Bioexpress, Lebanon, N.H.). Wells were blocked with 3% bovine serum albumin (BSA) in PBS. 100 μL samples were added to the wells either neat or diluted in a dilution buffer consisting of 1% BSA, 0.9% NaCl, 50 mM Tris pH 7.40, and 0.1% peroxide-free Tween 20 (Sigma). After shaking for 2 h at 600 RPM, a plate washer was used to wash the plate four times with 0.9% NaCl, 50 mM Tris pH 7.40, and 0.1% peroxide-free Tween 20. Then, 100 μL of
diluent buffer containing 1 μg/mL biotinylated 24-31 anti-human CD40L, Mab (Ancell) or MR1 anti-murine CD40L Mab (Pharmingen, San Diego, Calif.) was added to each well and the plate was shaken for 1 hour. After another four washes, the wells were washed for 10-20 min using 100 μL/well of BluePhos (Kierkegaard & Perry), stop solution was added, and the wells were read at 650 μm in a plate reader.

9. Purification of Human and Murine CD40L-SPD.

Conditioned UltraCHO media was filtered using a 0.2 μL PES filter unit (Nalgene) and stored at 4°C for up to 3 months. A preliminary size fractionation was performed by ultrafiltration through a 100 kDa-cutoff 76 mm membrane (YM-100, Millipore) in a 400 mL stirred cell at 10 lbs/sq. inch pressure of argon. Media was concentrated to about 20 mL, diluted to 100 mL with buffer, and then concentrated to 10 mL for a total of 3 cycles of ultrafiltration and buffer exchange. Buffer was 50 mM Bicine (Calbiochem), adjusted to pH 9.0 with NaOH (about 32 mM Na), and 1 mM EDTA to prevent the activity of any metalloproteinase. Using FPLC equipment (Amersham-Pharmacia), the concentrate was filtered through a 0.25 μL filter placed into a 10 mL ultrafiltration through a 100 kDa-cutoff 76 mm membrane (YM-100, Millipore), placed into a 10 mL filter, and applied to a Superose 6 column (Amersham-Pharmacia) in phosphate-buffered saline.

10. Murine B Cell Cultures.

C57Bl/6 mice were euthanized by CO₂ inhalation under a protocol approved by the Animal Subjects Committee of the San Diego VA Health Care System. Splenocytes were isolated by centrifugation over Lympholyte-M (Accurate Chemical & Scientific Corp. Westbury, N.Y.) and B cells were isolated by negative selection using anti-CD43 immunomagnetic beads (Miltenyi Biotec Inc. Auburn, CA). The resting B cells were suspended in Dulbecco’s MEM with 10% FBS at a concentration of 1x10⁶/mL, and 100 μL was added to the wells of 96-well RPMI1640 containing 200 μM L-glutamine and 10% heat-inactivated FBS. Alternatively, dendritic cells (DC) were formed from monocytes by adding GM-CSF and IL-4 to the culture media, and the resulting DC were used 6 days later. Preparations of CD40L-SPD were added to the wells as indicated. As a positive control, 100 ng/mL bacterial lipopolysaccharide (LPS) from E. coli 0111:B4 (Calbiochem) was added. Supernatants were collected 24 h later and analyzed for cytokine content using ELISA (R & D Systems).

EXAMPLE 1

Design Principles in Constructing Collectin-TNFSF Member Fusion Proteins.

To express CD40L and other TNFSF members as stable, multimeric proteins, the coding region of the extracellular, C-terminal portion of CD40L was joined in-frame to the collectin, surfactant protein D (SPD). The N-terminus of SPD contains two cysteines which form the disulfide bonds necessary for the 4-armed cruciate structure of the overall molecule [Brown-Augsburger, 1996]. C-terminal to these cysteines in SPD is a long triple-helical collaginous “stalk” which ends in the “neck” region that promotes the trimerization of each arm of the structure. Immediately after this neck region, the coding sequence for the extracellular portion of CD40L was added, in place of the carbohydrate recognition domain (CRD) of SPD. The collectins were chosen as the framework for the multimeric construct because of their multi-subunit structure and the trimeric nature of their stalk regions. Appropriateness of replacing the CRD of a collectin with the extracellular region of a TNFSF member is further supported by structural studies of the two protein families. An analysis of the CRD crystal structure of another collectin, ACRP30, indicated that it was structurally superimposable upon the crystal structures of the extracellular regions of CD40L, TNF, and Fas [Shapiro, 1998]. The successful expression of the collectin-TNFSF fusion protein, CD40L-SPD, indicates that other TNFSF members (Table I) could be joined to SPD in a similar manner and that other collectins besides SPD (Table II) could be used as a protein framework instead of SPD. Because these molecules are formed entirely from naturally occurring proteins, the production of an immune response (e.g., antibodies) to these fusion proteins is minimized. By deleting portions of the stalk region of the TNFSF proteins, additional constructs can be made which may be even less immunogenic.
Expression of Human and Murine CD40L-SPD in CHO Cells.

The coding regions for the extracellular portion of human CD40L, human T147N-CD40L, an inactive mutant of CD40L, or murine CD40L were joined to the neck region of murine SPD, replacing the SPD CRD (FIG. 1). A CMV-driven expression plasmid for the construct was co-transfected with a DHFR minigene into DNFR-deficient CHO cells. Following selection in nucleoside-free media, expressing CHO clones were amplified by culture in ascending doses of methotrexate. The resulting clones produced about 1-10 μg/mL of the fusion protein over a 5 day period in media containing FBS.

Clones were adapted for growth as suspension cells in two types of serum-free media. Murine CHO-SPD produced in UltraCHO (BioWhittaker) was largely retained (about 60% as determined by ELISA) by a 1,000 kDa cutoff ultrafiltration membrane (Pall Corp., Port Washington, N.Y.), consistent with a large multimeric complex formed by the stacking of the SPD portion of the molecule. However, in CHO-S-SFM II (Life Technologies), nearly all ELISA-detectable murine CHO-SPD passed through a 100 kDa cutoff ultrafiltration membrane (Millipore), suggesting that the protein was either folded incorrectly in this media or was being degraded by proteolysis. Consequently, the purification method was optimized for the spent UltraCHO media.

Purification of human and murine CD40L-SPD.

Purification procedures were developed for murine CD40L-SPD, but the same methods could be applied to human CD40L-SPD with minor modifications. Murine CD40L-SPD has a predicted m.w. of 49 kDa per chain, or about 600 kDa per l2-chain, cruciate molecule, the amino acid sequence predicts a pI of 9.10. Accordingly, conditioned media was concentrated by ultrafiltration through a 100 kDa cutoff filter, which also fractionates the sample on a size basis. After diafiltration into 50 mM bicine, pH 9.00 (also containing 1 mM EDTA added to inhibit metalloproteinases), the sample was applied to a variety of cationic exchange resins. Using Source 50S (Amersham-Pharmacia), most of the ELISA-detectable protein did not bind and was recovered in the flow-through. However, as reported by Morris et al. [Morris], Fractogel SO4 650M retained the protein. The retention by this tentacular resin and not by Source 50S suggests binding to positively charged residues that are not on the protein surface. Using a linear NaCl gradient, ELISA-detectable protein elutes at between 0.15-0.30 M NaCl under these conditions (FIG. 2). In selected experiments, the protein was further purified using a Superose 6 sizing column. Most of the ELISA-detectable protein eluted in the excluded volume, indicating an apparent m.w. of greater than 1,000 kDa (FIG. 3).

Activity of CD40L-SPD on Human B Cells.

Schulz et al. described a system using CD40L-expressing cells plus IL-4 and cyclosporin A (to inhibit T cell growth) as a means to grow very large numbers of B cells from a small sample of blood. Because CD40L activates these B cells to express high levels of B7 molecules (CD80 and CD86), the proliferating B cells were effective in presenting peptide antigens and rival non-dividing dendritic cells as antigen-presenting cells (APCs) (36). To determine if the CD40L-SPD fusion protein could replace CD40L-expressing cells in this system, PBMC were cultured with CD40L-SPD in addition to IL-4 and cyclosporin A. Under these conditions the cells grew to saturation density over three days. After three weeks, the cultures were almost entirely CD 19+ B cells which express high levels of CD80 (FIG. 4). This indicates that CD40L-SPD can be used in ex vivo systems where a soluble yet effective form of CD40L is needed to stimulate cells for immunotherapeutic applications.

Activity of CD40L-SPD on human macrophages and dendritic cells.

CD40L is a powerful stimulant for macrophages (reviewed in (28)) and dendritic cells (40). Accordingly, preparations of CD40L-SPD were added to monocyte-derived macrophages and the production of MIP-1β was used as a measure of stimulation. As shown in FIG. 6, both human and murine CD40L-SPD were able to stimulate macrophages, whereas the T147N-CD40L-SPD mutant was inactive as expected.

DISCUSSION

These examples define a new method of producing multimeric (i.e., many trimers) of CD40L as a fusion protein with SPD. Also prepared and expressed were similar fusion proteins between murine RANKL/TRANSE (TNFSF11) or murine CD27L/CD70 (TNFSF7) joined to murine SPD (data not shown). This suggests that virtually all TNFSF members could be successfully produced as fusion proteins with SPD. Furthermore, it is also likely that other collectins besides SPD could be used in these fusions, given the strong structural homologies between the CRDs of the collectins and the extracellular domains of TNFSF members [Shapiro] which can be substituted for these CRDs. Given the 17 known TNFSF members and 9 known collecting, at least 153 fusion protein combinations are possible.

SPD was selected for initially because it is a soluble homopolymer. Other collectins, such as surfactant protein A, have strong binding affinities to lipids and specific cell receptors. Although removal of the CRD abrogates much of this binding, it may be partially mediated by the neck region sequence, which the fusion proteins retain. Accordingly, it would be expected that collectins other than SPD might
confer different cell-binding and pharmacokinetic behaviors upon a fusion protein. For example, macrophages are known to take up and degrade whole SPD [Dong, 1998]. If a fusion protein other than SPD was used, the disposition of the fusion protein in vivo might be altered. Additionally, metalloproteinases are known to degrade the collectin, C1q, so that a fusion with C1q may alter the degradation of the fusion protein. For example, because CD40L activates macrophages and other cells to produce metalloproteinases, which could potentially degrade the collagenous portion of SPD and other collecting. Cleavage of the collagenous stalk would then be expected to release single-trimers of CD40L, which could diffuse away from the original parent molecule, much like a slow-release formulation of a drug. Also, the membrane-proximal portion of CD40L has been retained in CD40L-SPD. This sequence also contains protease-susceptible amino acid sequences, which can be eliminated by mutagenesis to retard the cleavage of CD40L from the fusion protein. Mutations in such proteinase cleavage site(s) would delay such cleavage and favor the local persistence of the CD40L stimulus.

CD40L-SPD is a large macromolecule (>1,000 kDa), and the other TNFSF-collectin fusion proteins would be expected to be similarly large. For native SPD, the aggregates that spontaneously form measure 100 nm in diameter. When injected into tissue, this large a complex would be expected to remain at the injection site for a prolonged period. Localization of the TNFSF-containing protein would also be expected to reduce any systemic toxicity caused by the release of free single-trimers into the circulation. For example, soluble CD40L in blood has been linked to disease activity in lupus, and this smaller molecule may even cross the glomerulus to cause damage to renal tubules [Kato and Kipps, J. Clin. Invest. November 1999]. On the other hand, because CD40L induces the production of chemokines which attract immune cells [Kornbluth], T cells, monocytes, and dendritic cells would be expected to migrate to the site where CD40L-SPD was injected. This might be advantageous if CD40L-SPD were used as a vaccine adjuvant. In mice, soluble CD40L (sCD40LT) stimulates IgG1 production but not cytotoxic T lymphocytes (CTLs) [Wong, 1999]. Interestingly, the same protein that is expressed from an injected plasmid stimulates both a strong antibody and CTL response [Gurunathan, 1998]. In the latter case, the plasmid would be expected to deliver a localized supply of CD40L, whereas the sCD40LT protein is free to diffusively. Support for the localized use of CD40L in an adjuvant formulation is provided by a study using a plasmid expressing full-length membrane CD40L, which was very effective in stimulating both humoral and CTL immune responses [Mendoza, 1997]. Similarly, injection of adenovirus expressing membrane CD40L has potent antitumor activity in mice [Kikuchi, 1999]. Similar considerations would likely apply to other fusion proteins between the TNFSF and collecting.

Finally, for immunostimulatory proteins, it is particularly important that the protein not be antigenic if repeated injections are needed. For example, vaccination with TNF-α modified by the addition of short peptide sequences was able to induce the production of disease-modifying anti-TNF-α autoantibodies [Dalum, 1999]. Because CD40L-SPD and other TNFSF-collectin fusion proteins are formed from endogenous protein sequences (with the possible exception of the peptide sequence at the junction), the production of antibodies might not limit the effectiveness of repeated injections.

In conclusion, fusions between TNFSF members and collectins offer a novel means of generating large protein complexes which can provide localized stimulation at an injection site. Because of the multimeric nature of the collectin backbone, such fusion proteins may mimic the multivalent ligand surface presented by the membrane forms of TNFSF members to TNFRSF-bearing responding cells. Moreover, by limiting systemic toxicity while maintaining localized efficacy, such fusion proteins may have a role as vaccine adjuvants against infectious agents and tumors.

<table>
<thead>
<tr>
<th>New Ligand Symbol</th>
<th>Other Names</th>
<th>Genbank ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTA</td>
<td>Lyphophiotrin, TNF-a, TNFSF1</td>
<td>X01393</td>
</tr>
<tr>
<td>TNF</td>
<td>TNFs, TNFSF2</td>
<td>X02910</td>
</tr>
<tr>
<td>TNF</td>
<td>TNF-a, TNFSF3</td>
<td>L11016</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>OX-40L</td>
<td>D90224</td>
</tr>
<tr>
<td>TNFSF5</td>
<td>CD40L, CD54, OP39, T-BAM</td>
<td>X67878</td>
</tr>
<tr>
<td>TNFSF6</td>
<td>FetL</td>
<td>U11821</td>
</tr>
<tr>
<td>TNFSF7</td>
<td>CD27L, CD70</td>
<td>L08996</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>CD80L</td>
<td>L09753</td>
</tr>
<tr>
<td>TNFSF9</td>
<td>4-1BBL</td>
<td>U03398</td>
</tr>
<tr>
<td>TNFSF10</td>
<td>TRAIL, Apo-2L</td>
<td>U37518</td>
</tr>
<tr>
<td>TNFSF11</td>
<td>RANKL, TRANCE, OPG, ODF</td>
<td>AF013171</td>
</tr>
<tr>
<td>TNFSF12</td>
<td>TWEAK, Apo-3L</td>
<td>AF030399</td>
</tr>
<tr>
<td>TNFSF13</td>
<td>APRIL</td>
<td>NM_003808</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>BAFF, THANK, BLYS</td>
<td>AF136293</td>
</tr>
<tr>
<td>TNFSF14</td>
<td>LIGHT, HVEM-L</td>
<td>AF036881</td>
</tr>
<tr>
<td>TNFSF15</td>
<td>VEGF</td>
<td>AF039550</td>
</tr>
<tr>
<td>TNFSF16</td>
<td>unidentified</td>
<td>unidentified</td>
</tr>
<tr>
<td>TNFSF17</td>
<td>unidentified</td>
<td>unidentified</td>
</tr>
<tr>
<td>TNFSF18</td>
<td>AITRL, GITRL</td>
<td>AF125363</td>
</tr>
</tbody>
</table>

*(as of Nov. 1, 1999) Known members of ligands in the TNF superfamily, taken from the Human Gene Nomenclature Committee

All collectins are formed as multimers of trimeric subunits, each containing a collagenous domain. The C-terminus of each collectin contains a CRD which binds carbohydrates and other ligands. Because of the tight similarities between the known CRD structures and the extracellular domains of TNFSF members, it is likely that the CRD of any collectin could be replaced with the extracellular domain of any TNFSF member in a structurally compatible manner.

While the present invention has now been described in terms of certain preferred embodiments, and exemplified with respect thereto, one skilled in the art will readily appreciate that various modifications, changes, omissions and substitutions may be made without departing from the spirit thereof. It is intended, therefore, that the present invention be limited solely by the scope of the following claims.

REFERENCES

Lane, P., T. Brocker, S. Hubele, N. Chappelle, A. Lanzavec­

Shapiro, L., and P. E. Scherer. 1998. The crystal structure of a complement-Iq family protein suggests an evolutionary link to tumor necrosis factor. Current Biology 8:335-338.

OTHER INFORMATION: Murine surfactant protein D (without the CRD) fused to the extracellular portion of human CD40L.

FEATURE:
NAME/KEY: 5'UTR
LOCATION: (7) .. (31)

FEATURE:
NAME/KEY: CDS
LOCATION: (32) .. (1444)

FEATURE:
NAME/KEY: sig_peptide
LOCATION: (32) .. (88)

OTHER INFORMATION: Signal peptide from murine surfactant protein D

FEATURE:
NAME/KEY: misc_feature
LOCATION: (88) .. (799)

OTHER INFORMATION: Mature murine surfactant protein D including hub region, collagenous portion, and neck, but excluding carbohydrate recognition domain (CRD)

FEATURE:
NAME/KEY: misc_feature
LOCATION: (801) .. (1546)

OTHER INFORMATION: Human CD40 ligand extracellular region, including stalk.

PUBLICATION INFORMATION:
AUTHORS: Motwani M
TITLE: Mouse surfactant protein-D. cDNA cloning, characterization, and gene localization to chromosome 14.
VOLUME: 155
ISSUE: 12
PAGES: 5671 TO 5677
DATE: 1995
RELEVANT RESIDUES: (32) .. (802)

PUBLICATION INFORMATION:
AUTHORS: Spriggs MK
TITLE: Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion
JOURNAL: Journal of Experimental Medicine
VOLUME: 176
ISSUE: 6
PAGES: 1543-1550
DATE: 1992
RELEVANT RESIDUES: (803) .. (1552)

SEQUENCE: 1

```
52
:gctagcgaat tccaccagga agcaatctga c
:atg ctg ccc ttt ctc tcc atg
Met Leu Pro Leu Ser Met
1 5

cct gtc ttg ctt gta cag coc coc ttg ctt tct cgg cta gat cgg cta gat aag
Leu Val Leu Leu Val Gln Pro Leu Leu Gly Ala Glu Met Lys
10 15 20

agc ctc tgg cag aga tca gtc ccc aac acc tgg cta gat tgt
Ser Leu Ser Gln Arg Ser Val Pro Aan Thr Cys Thr Leu Val Met Cys
25 30 35

agc cca aca gag aat ggc tct gct ggc gaa cct gga cca aag gga gaa cgt gga cta
Ser Pro Thr Glu Aan Leu Pro Leu Pro Arg Asp Gly Arg Arg Gly Arg
40 45 50 55

496

436
```
Gly Pro Ser Gly Lys Gln Gly Asn Ile Gly Pro Gln Gly Lys Pro Gly
120 125 130 135

ctt aac gga gac gct ggg ccc aac gga gaa gta ggt gct ctt ggc atg
Pro Lys Gly Glu Ala Gly Pro Lys Gly Glu Val Gly Ala Gly Pro Gly Met
140 145 150

caag tta cct aac gga gaa gca gaa aag gga gag aag
Gln Gly Ser Thr Gly Ala Lys Gly Ser Thr Gly Pro Lys Gly Glu Arg
155 160 165

gct ccc gct ggt gtc caa gga ggc cca ggg aat gct gga gca gca gga
Gly Ala Pro Gly Val Gln Gly Ala Pro Gly Asn Ala Gly Ala Gly
170 175 180

ctt gcc gga cct gcc gct cca cag gga gct cca gtt gcc ccc cag
Pro Ala Gly Pro Ala Gly Pro Gln Gly Ala Pro Gly Ser Arg Gly Pro
185 190 195

Gly Leu Lys Gly Asp Arg Val Pro Gly Asp Arg Gly Ile Lys
200 205 210 215

gtt gaa ggc ggg ctt cca gac gtt gct gtt ggc cag cag atg
glu Ser Gly Leu Pro Asp Ser Ala Leu Arg Glu Glu Met Glu
220 225 230

gcc taa aag gaa cca ctg ctt gct ggt gcc ttg tcc tcc cac tat
Ala Leu Lys Gly Lys Pro Val Pro Met Lys Thr Ile
235 240 245

cag aac gaa gat gaa aat ctt cat gat gaa gat ttt gta tcc atg aag
glu Asp Glu Arg Asn Leu Asp Phe Val Asp Met Lys Thr Ile
250 255 260

Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Leu Asp Cys Thr
280 285 290 295

gag tta aaa gga aac cca cag gct ctt gat ggc aag gta ggg cag
glu Ile Lys Ser Gly Phe Asn Ala Lys Val Asp Met Leu Asn
300 305 310

Glu Lys Thr Lys Gly Glu Asn Ser Phe Gly Met Glu Lys Gly Asp
315 320 325

cag aat cct ccc att ggc gaa cat gtt ggc aag aat gca ggc gac aat ccc
Gln Aan Pro Gly Ile Ala Gly Leu Ala Ser Lys Ser Cys Thr
330 335 340

Asn Asn Leu Val Leu Gly Lys Pro Gly Tyr Thr Met Ser
345 350 355

Aan Asn Leu Val Thr Lys Lys Gly Pro Thr Lys Glu Thr Val Lys Arg
360 365 370 375

caa gga ctc ctt gaa gta ggt gaa gtc ctc tcc ccc cag cag aag
Gln Gly Leu Tyr Tyr Ile Tyr Ala Glu Val Thr Phe Cys Ser Asn Arg
380 385 390

Gln Gly Pro Phe Glu Arg Val Leu Arg Ala Ala Thr His Ser
395 400 405

tcc gaa aac cct ggc cca ccc cag tcc atc tgc gaa gta ggg
cac ctc gga gtt ctc atc tgg cca gca gaa gta ttt
Ser Ala Tyr Pro Cys Gly Glu Ser Ile His Leu Gly Glu Val Phe
425 430 435
gaa ttg cca cca ggt gct tcg tgg ttt gtc aat gtg act gat cca agc 1396
Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn Val Thr Asp Pro Ser
440 445 450 455
cas gtt ggc act ggc act ggc ttc acg tcc ttt ggc tta ctc aas ctc 1444
Gln Val Ser His Gly Thr Gly Thr Ser Phe Gly Leu Leu Lys Leu
460 465 470
tgaacagtgc caccttcag gctgtagtg agctgagct cggagctttc ataatacagc 1504
acaggtctaa gcccatttat acactcaag gcagtagaa ctagtacc 1552
<210> SEQ ID NO 2
<211> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 2
Met Leu Pro Phe Leu Ser Met Leu Val Leu Leu Val Gln Pro Leu Gly
1 5 10 15
Asn Leu Gly Ala Glu Met Lys Ser Leu Ser Gin Arg Ser Val Pro Asn
20 25 30
Thr Cys Thr Leu Val Met Cys Ser Pro Thr Glu Asn Gly Leu Pro Gly
35 40 45
Arg Asp Gly Arg Asp Gly Glu Pro Arg Gly Lys Gly Asp
50 55 60
Pro Gly Leu Pro Gly Pro Met Leu Ser Gly Leu Gin Gly Pro Thr
65 70 75
Gly Pro Val Gly Pro Lys Gly Ala Gin Arg Ser Ala Gly Glu Pro Gly
85 90 95
Pro Lys Gly Glu Arg Gly Leu Ser Gly Pro Pro Gly Leu Pro Gly Ile
100 105 110
Pro Gly Pro Ala Gly Lys Glu Pro Ser Gly Lys Gin Gly Aen Ile
115 120 125
Gly Pro Gin Gly Lys Pro Gly Pro Lys Glu Ala Gin Pro Lys Gly
130 135 140
Glu Val Gly Ala Pro Gin Met Gin Ser Thr Gly Ala Lys Gin Ser
145 150 155 160
Thr Gly Pro Lys Gly Arg Gly Ala Pro Val Gly Gin Gly Ala Pro
165 170 175
Gly Aen Ala Gly Ala Ala Gly Pro Ala Gly Pro Gin Gly
180 185 190
Ala Pro Gly Ser Arg Gly Pro Pro Gly Leu Lys Gly Asp Gin Val
195 200 205
Pro Gly Asp Arg Gly Ile Lys Gly Ser Gin Gly Pro Leu Gin Asp Gin Val
210 215 220
Ala Leu Gin Gin Met Gin Leu Gly Lys Gin Leu Gin Gin Gin Gin Gin Gin
225 230 235 240
Glu Val Ala Phe Ser His Tyr Gin Lys Ala Ala Leu Phe Pro Gin Gly
245 250 255
His Gin Gin Lys Gin G
Val Lys Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser
305 310 315 320
Phe Glu Met Gln Lys Gly Asp Glu Asn Pro Glu Ile Ala Ala His Val
325 330 335
Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu
340 345 350
Lys Gly Tyr Tyr Thr Met Ser Asn Leu Val Thr Leu Glu Asn Gly
355 360 365
Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln
370 375 380
Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Glu Ala Pro Phe Ile
385 390 395 400
Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu
405 410 415
Arg Ala Ala Thr His Ser Ser Ala Lys Pro Cys Gly Gln Glu Ser
420 425 430
Ile His Leu Gly Gly Val Phe Leu Gln Pro Gly Ala Ser Val Phe
435 440 445
Val Aan Val Thr Asp Pro Ser Gln Val Ser Gly Thr Gly Phe Thr
450 455 460
Ser Phe Gly Leu Leu Lys Leu
465 470

<210> SEQ ID NO 3
<211> LENGTH: 1574
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<222> LOCATION: (7) .. (31)
<223> OTHER INFORMATION: Murine surfactant protein D (except CRD) fused
 to the extracellular domain of murine RANKL/TRANCE
<220> FEATURE:
<221> NAME/KEY: 5'UTR
<222> LOCATION: (32) .. (799)
<223> OTHER INFORMATION: Murine surfactant protein D including hub
 region, collagenous portion, and neck, but excluding carbohydrate
 recognition domain (CRD)
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (32) .. (1534)
<222> LOCATION: (800) .. (1534)
<223> OTHER INFORMATION: Murine RANKL/TRANCE extracellular region,
 including stalk
<300> PUBLICATION INFORMATION:
<301> AUTHORS: Motwani, M
<302> TITLE: Mouse surfactant protein-D. cDNA cloning,
 characterization, and gene localization to chromosome 14.
<303> JOURNAL: Journal of Immunology
<304> VOLUME: 155
<305> ISSUE: 12
<306> PAGES: 5671-5677
<307> DATE: 1995
<311> RELEVANT RESIDUES: (31) .. (799)
<300> PUBLICATION INFORMATION:
<301> AUTHORS: Anderson, DM
<302> TITLE: A homologue of the TNF receptor and its ligand enhance
 T-cell growth and dendritic-cell function.
<303> JOURNAL: Nature
<304> VOLUME: 390
<305> ISSUE: 6558
<306> PAGES: 175-179
DATE: 1997
RELEVANT RESIDUES: (800) .. (1534)

SEQUENCE: 3

```
gctagcgaa tccaccagga agcaattcga c atg ctg ccc ttc ttc tcc atg
  1  5
   Met Leu Pro Phe Leu Ser Met

cct gtt ttc ctt gta cag ccc ctg gga sat ctg gga gca gaa atg aag
  10  15  20
   Leu Val Leu Val Gly Pro Leu Gly Aan Leu Gly Ala Glu Met Lys

gag ctc tgc cag aga tca gta ccc aac acc tgc acc cta gtc atg tgt
  25  30  35
   Ser Leu Ser Gln Arg Ser Val Pro Aan Thr Cys Thr Leu Val Met Cys

gag cca aca gag sat ggc ctg gtt cgt gat gga ggt gga aat gat ggc
  40  45  50  55
   Pro Thr Glu Aan Gly Leu Pro Gly Arg Gly Arg Asp Gly Arg

gaa ggt cca cgg ggt gag aag gat gat cca ggt tgt cca gga ccc aat gga
  60  65
   Glu Gly Pro Arg Gly Lys Gly Aan Pro Leu Gly Pro Gly Met

ggg ctc tca ggg ttg cag ccc aca gta ccc aat gga ccc aag gga
  75  80  85
   Gly Leu Ser Gly Leu Gly Pro Thr Gly Pro Val Gly Lys Gly

gag sat ggc tct gct ggc gaa ctt gga cca aag gga gaa cgt gga cta
  90  95  100
   Glu Aan Gly Ser Gly Leu Gly Pro Aan Thr Lys Gly Arg Leu

gtg ccc ctc cca gga ctt cca gtt atct ctc gtt cca gct ggg aac gaa
  105  110  115
   Ser Gly Pro Gly Leu Pro Gly Ile Pro Gly Ala Gly Lys Glu

gct ccc ttc ggg aag cag ggg aac atg gga cct cca ggc aca gca ggt
  120  125  130  135
   Gly Pro Ser Gly Lys Gly Ser Thr Gly Pro Gly Lys Gly Pro Lys Gly

cct cca gga ggg ctt cca ggg cgg gaa gta gtt gct cct ggg ctc
  140  145  150
   Pro Lys Gly Ala Gly Pro Gly Gly Val Gly Ala Pro Gly Met

caa gga tct aca cgg gca aac gga tcc cca gga ccc aag gga gaa aag
  155  160  165
   Gln Gly Ser Thr Gly Ala Gly Ser Thr Gly Pro Lys Gly Aan Arg Arg

gct gcc cct ggt gtc cca gga gcc cca ggg aat gct gga gca gca gga
  170  175  180
   Gly Ala Pro Gly Val Gly Gly Aan Ala Gly Ala Ala Gly

cct gcc gga ctt gcc ggt cca ggg gaa gta gtt gct gcc ggg ccc
  185  190  195
   Pro Ala Gly Pro Ala Gly Pro Gly Ala Gly Pro Gly Ser Arg Gly Pro

cca gga tcc aag ggg gcc aag gcc ctt ccc att gcc gaa gaa atc aca
  200  205  210  215
   Pro Gly Leu Lys Gly Asp Arg Gly Val Pro Gly Arg Gly Ile Lys

ggt gcc cgg ctt cca gcc gcc aat ggt gtc ggt ctt gcc ggg cta aag
  220  225  230
   Gly Gly Ser Gly Leu Pro Arg Ser Ala Ala Gly Leu Arg Lys

gcc tta aag gga aaa cta cag tgt gtt gcc ctc gcc cta gaa gct gaa
  235  240  245
   Ala Leu Lys Gly Lys Leu Glu Val Ala Phe Ser His Tyr

cag aag gcc ggg ctc cgc gcc gcc cgg aat ccg ggc cag atg gat cgc
  250  255  260
   Gin Lys Ala Ala Leu Phe Pro Gly Arg Ala Glu Met Asp Pro Aan

gag atg ctc gaa gcc ggc gcc aag cta cag tgg ggc gcc ggg cta aag
  265  270  275
   Arg Ile Ser Gly Asp Ser Thr His Cys Phe Tyr Arg Ile Leu Arg Leu

cat gaa aac gca gtt ttc cag gag tcc gct gag aat gaa gac aca
  280  285  290  295
   His Glu Aan Gly Leu Lys Gly Ser Ser Thr Leu Leu Ser Gly Asp Thr
<table>
<thead>
<tr>
<th>280</th>
<th>285</th>
<th>290</th>
<th>295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>300</td>
<td>305</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>315</td>
<td>320</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Arg</td>
<td>Arg</td>
<td>Met</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Gln</td>
<td>Ala</td>
</tr>
<tr>
<td>330</td>
<td>335</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
<td>Met</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Tyr</td>
<td>Gln</td>
</tr>
<tr>
<td>345</td>
<td>350</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Ser</td>
<td>Trp</td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>360</td>
<td>365</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td>375</td>
<td>380</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Met</td>
<td>Asp</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>390</td>
<td>395</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Gln</td>
<td>His</td>
<td>Asp</td>
</tr>
<tr>
<td>405</td>
<td>410</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>Met</td>
<td>Ser</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td>420</td>
<td>425</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td>Thr</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>435</td>
<td>440</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>450</td>
<td>455</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Tyr</td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td>Met</td>
<td>Pro</td>
<td>Ser</td>
<td>Asp</td>
</tr>
<tr>
<td>465</td>
<td>470</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Gln</td>
<td>Pro</td>
</tr>
<tr>
<td>Thr</td>
<td>Tyr</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>480</td>
<td>485</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Asp</td>
</tr>
<tr>
<td>Asp</td>
<td>Thr</td>
<td>Phe</td>
<td>Arg</td>
</tr>
<tr>
<td>495</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alp</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>505</td>
<td>510</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Met</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>520</td>
<td>525</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Val</td>
<td>Gln</td>
</tr>
<tr>
<td>535</td>
<td>540</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>550</td>
<td>555</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>565</td>
<td>570</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Thr</td>
<td></td>
</tr>
</tbody>
</table>
Gly Pro Val Gly Pro Lys Gly Glu Gly Asn Gly Ser Ala Gly Glu Pro Gly
Pro Lys Gly Glu Arg Gly Leu Ser Gly Pro Gly Leu Pro Gly Ile
Pro Gly Pro Ala Gly Lys Glu Gly Pro Ser Gly Lys Glu Gly Asn Ile
Gly Pro Gln Gly Lys Pro Gly Pro Gly Glu Ala Gly Pro Lys Gly
Glu Val Gly Ala Pro Gly Met Gly Ser Thr Gly Ala Lys Gly Ser
Thr Gly Pro Lys Gly Glu Arg Gly Ala Pro Gly Val Gly Gly Ala Pro
Gly Asn Ala Gly Ala Ala Gly Pro Ala Gly Pro Gly Glu Gly
Ala Pro Gly Ser Arg Gly Pro Gly Leu Lys Gly Asp Arg Gly Val
Pro Gly Asp Arg Gly Ile Lys Gly Ser Gly Leu Pro Asp Ser Ala
Ala Leu Arg Gln Met Gly Leu Lys Gly Leu Gly Arg Leu
Glu Val Ala Phe Ser His Tyr Lys Ala Ala Leu Phe Pro Asp Gly
Arg Ala Gln Met Asp Pro Asn Arg Ile Ser Glu Asp Ser Thr His Cys
Phe Tyr Arg Ile Leu Arg Leu His Gly Asn Ala Gly Leu Gly Asp Ser
Thr Leu Glu Ser Glu Thr Leu Pro Asp Ser Cys Arg Arg Met Lys
Gln Ala Phe Gln Gly Ala Val Gln Lys Glu Leu Gly His Ile Val Gly
Pro Gln Arg Phe Ser Gly Ala Pro Ala Met Met Gly Ser Trp Leu
Asp Val Ala Gln Arg Gly Lys Pro Glu Ala Gln Pro Phe Ala His Leu
Thr Ile Asn Ala Ala Ser Ile Pro Ser Gly Ser His Lys Val Thr Leu
Ser Ser Trp Tyr His Asp Gly Trp Ala Lys Ile Ser Ser Asn Met Thr
Leu Ser Asn Gly Lys Leu Arg Val Asn Glu Asp Phe Tyr Tyr Leu
Tyr Ala Asn Ile Cys Phe Arg His His Gly Thr Ser Gly Ser Val Pro
Thr Asp Tyr Leu Glu Leu Met Val Tyr Val Val Lys Thr Ser Ile Lys
Ile Pro Ser Ser His Asn Leu Met Lys Gly Gly Ser Thr Lys Asn Trp
Ser Gly Asn Ser Glu Phe His Phe Tyr Ser Ile Asn Val Gly Gly Phe
Phe Lys Leu Arg Ala Gly Glu Ile Ser Ile Asn Val Ser Asn Pro
Ser Leu Leu Asp Pro Asp Glu Asp Ala Thr Tyr Phe Gly Ala Phe Lys
Val Gln Asp Ile Asp
500

SEQ ID NO 5
LENGTH: 1477
TYPE: DNA
ORGANISM: Artificial Sequence
OTHER INFORMATION: Murine surfactant protein D (except CRD) fused to the extracellular domain of murine CD40 ligand

NAME/KEY: 5'UTR
LOCATION: (7) .. (31)
OTHER INFORMATION: 5'UTR from rat surfactant protein D

NAME/KEY: sig_peptide
LOCATION: (32) .. (87)
OTHER INFORMATION: Signal peptide from murine surfactant protein D

NAME/KEY: mise_feature
LOCATION: (88) .. (799)

NAME/KEY: mise_feature
LOCATION: (800) .. (1441)

PUBLICATION INFORMATION:
AUTHORS: Motwani M
TITLE: Mouse surfactant protein-D. cDNA clonings, characterization, and gene localization to chromosome 14.
JOURNAL: Nature
VOLUME: 357
ISSUE: 6373
PAGES: 80 TO 82
DATE: 1992-05-07
RELEVANT RESIDUES: (801) .. (1441)

PUBLICATION INFORMATION:
AUTHORS: Armitage RJ
TITLE: Molecular and biological characterization of a murine ligand for CD40.
JOURNAL: Nature
VOLUME: 357
ISSUE: 6373
PAGES: 80 TO 82
DATE: 1992-05-07
RELEVANT RESIDUES: (801) .. (1441)

SEQUENCE: 5

5'UTR (7) .. (31)
3'UTR (1477)
agt gga cct cca gga ctt cca ggt att cct ggt cca gct ggg aat gaa 388
Ser Gly Pro Pro Gly Leu Pro Gly Pro Gly Pro Ala Gly Lys Glu
105 110 115

ggt ccc tgt ggg aag cag ggg aac ata gga cct cca ggc aat cca ggt
Gly Pro Ser Gly Lys Gln Gly Asn Ile Gly Pro Gly Lys Pro Gly
120 125 130 135

cct cca gga ggg ctt ggg ccc aat gga gaa gta ggt ctg cct ggc att
Pro Lys Gly Glu Ala Gly Pro Gly Glu Val Gly Ala Pro Gly Met
140 145 150

caa gga ctt cca gga aat gga gca gaa gaa 532
Gln Gly Ser Thr Gly Ala Lys Gly Ser Thr Gly Pro Gly Glu Arg
155 160 165

ggt gcc ctt ggt gtt cag ggc ccg cgg aat ctt gtt gga gca gaa 580
Gly Ala Pro Gly Val Gln Gly Ala Pro Gly Asn Ala Gly Pro Gly
170 175 180

cct gcc gga ctt ggt gcc cta gag gcc aat ggt cct gcc aag gcc 628
Pro Ala Gly Pro Ala Gly Pro Val Gly Pro Ala Pro Gly Ser Arg Gly Pro
195 200 205 210

cca gga ctc aag ggg gac aga gat gcc tgt ctc gcc cag gcc aag gcc 676
Pro Gly Leu Lys Gly Asp Arg Gly Lys Gly Arg Gly Glu
220 225 230

ggt gaa aag ggg ctc cca gac cag gct ggt cgc atg gca gaa gga 724
Gly Glu Ser Gly Leu Pro Asp Ser Pro Ser Leu Pro Gly Glu Arg
245 250 255

gcc tta aac ggl aat cag gct cta gag gtt ggc ctc ccc cag ctc ccc 772
Ala Leu Lys Leu Leu Gly Leu Leu Lys Arg Leu Glu
270 275 280 285

cag aag gaa gca ccc cta gat ggc cac aag gga tgg gat gaa gtc 820
Gln Lys Ala Ala Leu Phe Pro Asp Gly Arg Leu Ala Leu Val
295 300 305 310

gaa gaa gaa gta aac cct cat gaa gat ttt gta ttc ata aac gta 868
Glu Glu Glu Val Asp Leu Asn Ser Val Leu
315 320 325

aag gaa gaa gaa gaa gaa aat ggg gac aga gat ggg 916
Lys Glu Glu Glu Glu Glu Lys Arg Gln
330 335 340

gat ccc att gca gca ccc gcc aat gaa gca gaa aag aga aat gag 964
Asp Pro Glu Glu Glu Asp Pro Glu Ala Ala Asp Asn Ala
345 350 355

gca tcc gtt cta cag tgg gcc aag aag gcc tat tac acc atc aag 1012
Ala Ser Val Leu Gln Thr Ala Lys Lys Gly Tyr Tyr Thr Met Lys Ser
360 365 370 375

aac tgg cta atg cta gaa aat ggg aac cag cta gct gct aat cag gaa 1156
Asn Leu Val Met Leu Ala Asn Gly Leu Thr Val Lys Arg Glu
390 395 400 405

gga ctc tat tat gtc tac atc ctc gcc gcc tgc tct aat cgg gag 1204
Gly Leu Tyr Tyr Thr Thr Glu Val Phe Cys Asn Arg Glu
410 415 420 425

att gga ctt gag aag gca aat gac aac gaa aat cct 1252
Ile Gly Ser Glu Arg Ile Leu Leu Gly Ala Ala Thr His Ser
430 435 440 445

agt gga cct cca gga ctt cca ggt att cct ggt cca gct ggg aat gaa 388
Ser Gly Pro Pro Gly Leu Pro Gly Pro Gly Pro Ala Gly Lys Glu
105 110 115

ggt ccc tgt ggg aag cag ggg aac ata gga cct cca ggc aat cca ggt
Gly Pro Ser Gly Lys Gln Gly Asn Ile Gly Pro Gly Lys Pro Gly
120 125 130 135

cct cca gga ggg ctt ggg ccc aat gga gaa gta ggt ctg cct ggc att
Pro Lys Gly Glu Ala Gly Pro Gly Glu Val Gly Ala Pro Gly Met
140 145 150

caa gga ctt cca gga aat gga gca gaa gaa 532
Gln Gly Ser Thr Gly Ala Lys Gly Ser Thr Gly Pro Gly Glu Arg
155 160 165

ggt gcc ctt ggt gtt cag ggc ccg cgg aat ctt gtt gga gca gaa 580
Gly Ala Pro Gly Val Gln Gly Ala Pro Gly Asn Ala Gly Pro Gly
170 175 180

cct gcc gga ctt ggt gcc cta gag gcc aat ggt cct gcc aag gcc 628
Pro Ala Gly Pro Ala Gly Pro Val Gly Pro Ala Pro Gly Ser Arg Gly Pro
195 200 205 210

cca gga ctc aag ggg gac aga gat gcc tgt ctc gcc cag gcc aag gcc 676
Pro Gly Leu Lys Gly Asp Arg Gly Lys Gly Arg Gly Glu
220 225 230

ggt gaa aag ggg ctc cca gac cag gct ggt cgc atg gca gaa gga 724
Gly Glu Ser Gly Leu Pro Asp Ser Pro Ser Leu Pro Gly Glu Arg
245 250 255

gcc tta aac ggl aat cag gct cta gag gtt ggc ctc ccc cag ctc ccc 772
Ala Leu Lys Leu Leu Gly Leu Leu Lys Arg Leu Glu
270 275 280 285

cag aag gaa gca ccc cta gat ggc cac aag gga tgg gat gaa gtc 820
Gln Lys Ala Ala Leu Phe Pro Asp Gly Arg Leu Ala Leu Val
295 300 305 310

gaa gaa gaa gta aac cct cat gaa gat ttt gta ttc ata aac gta 868
Glu Glu Glu Val Asp Leu Asn Ser Val Leu
315 320 325

aag gaa gaa gaa gaa gaa aat ggg gac aga gat ggg 916
Lys Glu Glu Glu Glu Glu Lys Arg Gln
330 335 340

gat ccc att gca gca ccc gcc aat gaa gca gaa aag aga aat gag 964
Asp Pro Glu Glu Glu Asp Pro Glu Ala Ala Asp Asn Ala
345 350 355

gca tcc gtt cta cag tgg gcc aag aag gcc tat tac acc atc aag 1012
Ala Ser Val Leu Gln Thr Ala Lys Lys Gly Tyr Tyr Thr Met Lys Ser
360 365 370 375

aac tgg cta atg cta gaa aat ggg aac cag cta gct gct aat cag gaa 1156
Asn Leu Val Met Leu Ala Asn Gly Leu Thr Val Lys Arg Glu
390 395 400 405

gga ctc tat tat gtc tac atc ctc gcc gcc tgc tct aat cgg gag 1204
Gly Leu Tyr Tyr Thr Thr Glu Val Phe Cys Asn Arg Glu
410 415 420 425

att gga ctt gag aag gca aat gac aac gaa aat cct 1252
Ile Gly Ser Glu Arg Ile Leu Leu Gly Ala Ala Thr His Ser
430 435 440 445
tcc cag ctt tgc gag cag cag tct gtt cac ttg ggc gga gtg ttt gaa 1348
Ser Gln Leu Cys Glu Gln Ser Val His Leu Gly Val Phe Glu
425 430 435
tta caa gct ggt gct tct gtg ttt gtc aac gtg act gaa gca agc caa 1396
Leu Gln Ala Gly Ala Ser Val Phe Val Asn Val Thr Glu Ala Ser Gin
440 445 450 455
gtg atc cac aga gtt ggc ttc tca tct ttt ggc tta ctc aaa ctc 1441
Val Ile His Arg Val Gly Phe Ser Ser Phe Gly Leu Leu Lys Leu
460 465 470
tgaacagtgc gctgtcctag gctgcagcag ggtacc 1477
<210> SEQ ID NO 6
<211> LENGTH: 470
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE:
Met Leu Pro Phe Leu Ser Met Leu Leu Val Gln Pro Leu Gly
1 5 10 15
Asn Leu Gly Ala Glu Met Lys Ser Leu Ser Gin Ser Val Pro Asn
20 25 30
Thr Cys Thr Leu Val Met Cys Ser Pro Thr Glu Asn Gly Leu Pro Gly
35 40 45
Arg Asp Gly Arg Asp Gly Arg Glu Gly Pro Arg Gly Glu Lys Gly Asp
50 55 60
Pro Gly Leu Pro Gly Pro Met Gly Leu Ser Gly Leu Gin Gly Pro Thr
65 70 75
Gly Pro Val Gly Pro Lys Gly Asn Gin Ser Ala Gin Glu Pro Gly
85 90 95
Pro Lys Gly Gin Gin
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 10
tctatcctgt ccacccctct atggccatca gggacacatg cagctttc 48
<210> SEQ ID NO 11
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 11
aaagctgcag tgttccctga tggccataga aggttggaca agatagaag 49
<210> SEQ ID NO 12
<211> LENGTH: 41
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 12
gggtcgcagg taccagttcct acatgccttg gagtgtataa t 41
<210> SEQ ID NO 13
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 13
gaaagctgca ttgttccctg atggccatag aagattggat aaggtcgaag 50
<210> SEQ ID NO 14
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 14
cctcgacctt atccaatctt ctatggccat cagggaacaa tgcagctttc 50
<210> SEQ ID NO 15
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 15
ggggggtacc ctggtgagct gcac

Lys Ala Ala Leu Phe Pro Asp Gly His Arg Arg Leu Asp Lys Ile Glu
1 5 10 15
<210> SEQ ID NO 17
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Fusion segment of SPD and murine CD40L sequence region

<400> SEQUENCE: 17

Lys Ala Ala Leu Phe Pro Asp Gly His Arg Arg Leu Asp Lys Val Glu
1 5 10 15

<210> SEQ ID NO 18
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 18
catgcttctgc gcctctcctc

<210> SEQ ID NO 19
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 19
gtacagctctc aagagagag gg

<210> SEQ ID NO 20
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 20
atactcgagc gcagatggat cctaac

<210> SEQ ID NO 21
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 21
gggttttagc gcgcagcatt gtttacgaa atgttctc

<210> SEQ ID NO 22
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Fusion sequence of SPD and RANKL/TRANCE sequence region

<400> SEQUENCE: 22
Lys Ala Ala Leu Phe Pro Asp Gly Arg Ala Gln Met Asp Pro Asn Arg
1 5 10 15
What is claimed is:

1. A soluble multimeric polypeptide of at least two trimer units, wherein each trimer unit comprises a fusion protein trimer strand consisting of:
   a first polypeptide comprising the first about 100 to 250 N-terminus residues of a collectin family scaffold protein, wherein the first polypeptide comprises a hub and a body region of the collectin family scaffold protein; and
   a second polypeptide comprising the last about 100 to 250 C-terminus residues of a tumor necrosis factor superfamily (TNFSF) ligand, wherein the second polypeptide comprises an extracellular domain (ECD) of the TNFSF ligand,
   wherein the carboxy-terminal residue of the first polypeptide is operably linked to the amino-terminal residue of the second polypeptide via:
   i) deletion of a carbohydrate recognition domain (CRD) of the collectin family scaffold protein and
   ii) replacement of the CDR with the ECD of the TNFSF ligand,
   whereby a single trimer strand spontaneously trimerizes with two additional trimer strands to form a trimer unit and the trimer unit binds at the hub to form the multimeric polypeptide.

2. The multimeric polypeptide of claim 1, wherein the TNFSF ligand is selected from lymphotoxin-A (LTA), lymphotoxin-B (LTB), tumor necrosis factor (TNF), or any of TNFSF4-15 and TNFSF18.

3. The multimeric polypeptide of claim 1, wherein the collectin family scaffold protein is selected from complement factor 1(C1q), mannose binding protein, mannose-binding lectin type 1(MBL1), mannose-binding lectin type 2 (MBL2), pulmonary surfactant protein A (SPA), pulmonary surfactant protein D (SPD), conglutinin, collectin 43, C-type lectin L1(CL-L1), adipocyte complement related protein of 30 kDa (ACRP30), or hibernation specific protein 27 (Hib27).

4. The multimeric polypeptide of claim 1, wherein the trimer unit comprises homomeric trimer strands.

5. The multimeric polypeptide of claim 1, wherein the trimer unit comprises heteromeric trimer strands.

6. The multimeric polypeptide of claim 1, wherein the collectin family scaffold protein is surfactant protein D.

7. The multimeric polypeptide of claim 1, wherein the TNFSF ligand is CD40L.

8. The multimeric polypeptide of claim 1, wherein the trimer strand is SPD-CD40L.

9. The multimeric polypeptide of claim 1, wherein the TNFSF ligand is receptor activator of NF-kappaB ligand (RANKL).

10. The multimeric polypeptide of claim 1, wherein the trimer strand is SPD-RANKL.

11. The multimeric polypeptide of claim 1, wherein the TNFSF ligand is CD27L/CD70.

12. The multimeric polypeptide of claim 1, wherein the trimer strand is SPD-CD27L/CD70.

13. The multimeric polypeptide of claim 1, wherein amino acid residues comprising the trimerized strands which are susceptible to proteolytic degradation are removed from the multimeric polypeptide.

14. The multimeric polypeptide of claim 1, wherein the multimer is a dimer of trimer units.